EXECUTIVE SUMMARY SPONSORED CONTENT

Modern Modelling Tools for Small Molecule
Solid Dose Manufacturing

Mathematical and computerized modelling tools
can improve scale-up and efficiency of continuous
manufacturing of oral solid dosage drugs.

Christin Hollis, PhD

Associate Director,
OVERVIEW Product Development Department
Catalent

Rising costs, evolving regulations, and technological advancements are all
impacting the manufacture of pharmaceutical oral solid dosage forms (OSDs).
To remain competitive, companies must adopt efficient manufacturing practices
that drive product innovation. As the pharmaceutical industry continues moving
from batch towards continuous manufacturing, model-based approaches to

process design and development, rather than empirical experimentation, offer the Rohit Ramachandran, PhD
Professor of Chemical and

) ) Biochemical Engineering
article explores current trends for OSD manufacturing and references real-world Rutgers University

necessary insight to achieve product efficacy and manufacturing efficiency. This

case studies to examine how mathematical and computerized modelling fools can
improve scale-up and efficiency.

Sponsored by
INTRODUCTION TO OSD MANUFACTURING PROCESSES

Typically, OSD manufacturing involves a sequence of unit operations that begins

with feeding in the purified drug substance and any excipients and ends with Cata Ie nt
encapsulation or fablet compaction-coating route. While the exact choice of

manufacturing route depends upon the individual formulation, processing

conditions, and any practical equipment considerations, those most widely

employed as upstream pharmaceutical manufacturing processes are direct
compaction, dry granulation, wet granulation and spray drying.

Process models are ufilized to support the defermination of design space,
formulation and process optimization, scale-up, release-testing, and control
strategy development. They provide the basis for establishing a risk-based
framework fo understand the functional relationships between important inputs,
such as material attributes (MAs), process parameters (PPs), and design properties
(DPs), and their effects on quality attributes (QAs), some of which will be Critical
Quiality Attributes (CQAs) that must be maintained within specified limits.

Pharmaceutical
Technology
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PRINCIPLES OF MODELLING
In regulatory terms, process models can be categorized as:

+ Low Impact - used to support process or product
development, e.g., formulation optimization models.

+ Medium Impact - aid in assuring product quality but are
not the sole or significant indicator of product quality,
e.g., design space models.

+ High Impact - can be used as the sole or significant
indicator of product quality, e.g., surrogate models for
dissolution.

While there is no direct correlation between model impact and
the degree to which a model or simulation reproduces the
state and behaviour of a real-world object, there is a direct
correlation between model impact and model physics. Models
that contain increasing degrees of physics understanding

via the incorporation of PPs (Level 1), MAs (Level 2), and DPs
(Level 3) to quantify effects on QAs, are considered to trend
toward higher impact. (FIGURE 1) outlines the development
framework for a high-impact model infended to predict
product performance, the most desirable atfribute fo
understand, control and optimize.

FIGURE 1I: High-impact mode development framework.
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(FIGURE 2) shows the types of model fidelities common

in particulate pharmaceutical processes and underpin the
construction of models for different purposes. Af one end

of the spectrum are models derived from first principles,
balances, or theoretical properties. An example would be

the computational fluid dynamics-discrete element model
(CFD-DEM) used to investigate the translational and rotational
dynamics of polydispersed particles in a pseudo-two-
dimensional spouted bed. Next are empirical/data-driven
models, derived primarily by fitting data to certain estimated
parameters. Next are the hybrid models that combine both
first principles and data-driven attributes. These are especially
useful for processes where the physics is well understood

in some parts but not in all. Finally, there are more recent
physics-informed/constrained data-driven models. As shown,
each model has its specific advantages and drawbacks.

MODELLING TECHNIQUES AT DIFFERENT SCALES
Model-based solutions can help identify optimal design
spaces, a fundamental requirement for Quality by Design
(QbD). At the microscopic level, models are typically first-
principles based or hybrid and can properly account for

« Higher level incorporation of model physics
typically enhance the use of the model for
process/product development

* Intermediate models are model
representations that provide a quick
estimation of output that usually is not
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measured and is not a descriptor of product
quality.

*  Output models are model representations
that take input from intermediate models and
predict process output that can be measured
but are not a descriptor of product quality.

*  Product models are model representations
that take input from output models are
predict metrics that are direct indicators of
product quality.
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FIGURE 2: Types of process model fidelities.
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the physics at these levels. Models at the mesoscopic level
are usually semi-mechanistic, equation-based models.
Macroscopic level models are generally data-driven or
empirical and can be used for rapid analysis, simulation
optimization, and control. All these models can be
incorporated when examining the particulate processes
integral to pharmaceutical manufacturing. Model building
starts from the microscopic level and brings in all the
important material properties, equipment properties, and
process parameters. Building then moves seamlessly, right
through to the application level. Such modelling supports
greater understanding, improvement, and optimization of all
the processes involved (FIGURE 3).

Process modelling fransforms pharmaceutical
manufacturing by providing the scientific insight that
ensures a process is designed for its infended outcomes.
Greater process visibility means less trial and error,
improved compliance, and continuous improvement. And by
characterizing the design and response spaces, modelling
helps reduce R&D cost and fime.

Pros - Cons

Model dependent

CASE STUDY 1: APPLYING MODELLING TO WET
GRANULATION AT RUTGERS

Wet granulation is a particle enlargement process whereby
fine powder is converted into granules through the addition of
a liquid binder, improving a material’s flow and compression
properties and reducing segregation. It is widely applied

in OSD manufacturing. Understanding wet granulation
requires the categorization of the key inputs (process
parameters, material attributes, design properties) and key
outputs (particle/granule size distributions, liquid content

and distribution, porosity/bulk density, content uniformity,
friability, flow, dissolution kinetics). Process parameters
include rotational rate and liquid/solid ratio, while key material
attributes include viscosity, solubility, and wettability. Design
properties are equipment-dependent characteristics, for
example, geometry and the type of blade and screws used.
The outputs are all the QAs, many of which will tfranslate fo the
final CQAs requiring quantification.

Wet granulation modelling strategies and their application
are explained in (FIGURE 4), which references the different
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levels of model and approaches discussed earlier. Primarily, @ requires the DEM to become a reduced order model (ROM),
first principles DEM is combined with a mesoscopic population  achieved using an arfificial neural network (ANN). The idea
balance model (PBM) approach. This gives a Level -3 model behind using a PBM and ROM is that the model is just as

that is computationally highly intensive, which makes it accurate as the previous PBM-DEM but is computationally
applicable for process design simulation but impractical for much more efficient, the caveat being that the ROM must be
process optimization and control. Moving to the next level well-frained using input and output data from the full model.
i
FIGURE 3: Modelling techniques at different scales. |
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Particle distributions within DEM are updated from PBM at specified time intervals. Data transfer occurs in real time. Process parameters
can be inputted in both DEM and PBM.

»  Level 1-2: Multi-dimensional population balance model (PBM) + model verification. Often does not incorporate most material properties.

Cannot account for design properties.
* Level 1-3: PBM + DEM (Discrete element method) coupling. Includes relevant material and design properties. Computationally intensive.

+ Level 1-3: PBM + ROM (reduced order model) coupling. Computationally efficient and accurate if trained well.
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Experimental work involving a twin-screw granulator first
explored making changes (seven levels) to one of the process
parameters (the liquid-to-solid (LS) ratio) while keeping all
other parameters constant. As expected, increasing the LS
ratio resulted in larger granules, narrower size distribution,
and lower porosity. The challenge was to use a model
calibrated with experimental data to predict outcomes.

When a model is not fully physics or first principle based, it

is often hybrid or empirical, containing parameters that do
not necessarily correlate with the physics but are important

in accounting for any error or model uncertainty. These
parameters must be tuned with a limited set of experiments to
predict data under different conditions.

In its first version, the Level 1 PBM developed in this experiment
was designed to predict three different types of parficle size
distribution: the D25, D50, and D75. In practice, the measured
and simulated product sizes versus LS ratio proved to be in
close agreement. This basic model does a good job but there
are many ways to improve it, one of which is fo incorporate
material attributes. Here, as in many other instances, the goal
is to improve the physics of the model. This is offen achieved
by combining it with other model forms. It is important not
only to include material attributes but also fo reduce the
number of empirical parameters, to make the model more
flexible and more versatile.

One way of achieving this is fo incorporate a DEM, and it is
instructive fo see where this will fit. In wet granulation systems,
aggregation rate is important and is a function of collision
frequency and collision efficiency (the likelihood that a collision
will result in granulation). Collision frequency is usually
determined empirically with the assumption that every particle
can collide with every other. Often, however, this is false and
can lead to over-estimation of the aggregation rate. Collision
rate can be more accurately determined directly from a DEM

in which particle interactions are fracked from the outsef.
Collision efficiency has also to be factored info the granulation
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model. Here empirical terms remain in use in the literature,

but there is a growing trend towards the development of more
mechanistic, or first principle-based terms, incorporating a
variety of materials properties. Essentially, as models advance,
each one incorporates a higher level of understanding,
enabling their use for many purposes.

CASE STUDY 2: MODEL-BASED PROCESS DEVELOPMENT
OF FLUID BED GRANULATION AT CATALENT

In a typical fluid bed granulation sequence, raw materials are
first fluidized by heated inlet air volume. The binder solution

is then sprayed onto the fluidized solid particles. As the

binder droplets collide with the solid particles, these begin to
agglomerate and eventually enlarge in size. A drying stage
follows to reduce the moisture contfent of the granules to a
predetermined value.

The typical and traditional way of managing fluid bed
granulation is through temperature control. Once temperature
ranges are set, the equipment PID loop then maintains control.
However, modelling from a thermodynamic perspective has
shown that the relative humidity (RH) of the fluid bed plays a
significant role in the agglomeration process and that collision
mechanisms between droplets and solid parficles also govern
the way agglomerations are formed.

The main CQAs for the granules are granulation density,
particle size distribution, and moisture content. The major
critical processing parameters (CPPs) include product and
exhaust temperature, atomization air pressure and volume,
spray rate, nozzle geometry, and binder solution properties.
Establishing a bridge between the CPPs and the CQAs enables
the process to move towards delivering the expected results in
terms of granulation properties.

(FIGURE 5) describes how the CPPs influence the granulation
process and, therefore the CQAs of the granules. Clearly, the
inlet air humidity and the spray rate affect the aggregate
moisture content of the bed. The more moisture, the
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larger the particle size distribution. Looking at this from

the fluidization viewpoint, insufficient airflow will lead fo

a stalled bed that fails to fluidize. At the other extreme,

too much inlet air would result in very lean fluidization in
which binder solution droplets evaporate before having the
chance to collide with the solid parficles and thus frigger
agglomeration. Inlet airflow also affects the rate at which
moisture is removed from the system, while the droplet
particle collision mechanism, droplef size, and droplet
particle relative velocity all impact the wetting mechanism.

In pharmaceutical manufacturing, fluidized bed granulation
scale-up is often performed empirically. The traditional
approach is to increase the spray rate proportionally with the
cross-sectional area of the air distributor plate. However, this
is a very simplistic approach, given that the most important
factors driving granulation are the fluidized bed moisture level
and the collision mechanism. Other disadvantages of the
traditional approach are that it requires feasibility batches
thatincrease R&D fime and costs, and it is nof possible to
quantify the scale basis for regulatory and filing purposes.

As shown in (FIGURE 5), which looks at applying QbD
principles to model-based process development of fluid bed
granulation, the model-based manufacturing processes
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normally occur where product and process design spaces
are being defined. Following QbD principles, the main goal
is to provide a summary of the scientific understanding of
the product and process, together with a justification and
description of the multidimensional space that assures the
final quality of the product.

As already touched upon, the two main aspects of fluid bed
granulation are the thermodynamics of the granulation

and the fluid mechanics of the droplet formation. From a
thermodynamics perspective, the fluid bed moisture level must
be optimal for the intended particle size distribution. Knowing
the moisture level enables the determination of the required
spray rate. Once the spray rate is known, decisions about the
droplet formation mechanism must take account of droplet
size distribution and droplet pattern. These eventually boil
down to nozzle size, atomization, air pressure, and volume.
Traditional approaches do not deliver scientific or risk-based
justifications for many of these parameters.

At Catalent, model-based process development can draw upon
large amounts of historical data and experience, and this is used
to train and modify the process models. System inputs comprise
all the historical data for raw materials and equipment at
different scales, which informs the models’ outputs.

FIGURE 5: Implementing QbD principles to model-based process development of fluid bed granulation.
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To make this approach applicable to a variety of users,
models are being integrated into a software developed using
QbD principles. This will streamline information flow across
different organizational entities, from supply chain and testing
laboratories, for example, through process and product
development and eventually fo quality control. Ultimately, it
will be a simple task to upload information, or download it
from the supply chain and go straight to the models.

FIGURE 6 exemplifies the process development of a fluid bed
granulation using a model and compares it with the same
process developed empirically. As the empirical process (left)
is temperature oriented, the PID loop fries fo maintain product
temperature and has to make frequent changes to both the
process airflow and process air temperature. Such changes
impact the RH of the fluid bed. In the redesigned, model-
developed process (right), control was maintained with only
minor variations in inlet air temperature or flow and, thus
minimal disruption to the RH of the bed.

Optimizing the process using the model also enabled a
narrowing of the particle size distribution with enhanced
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flowability of the material, minimizing the risk of segregation,
improving content uniformity, and achieving greater
compressibility of the granules. This also franslates into an
improved capability to meet tablet thickness specifications,
with lower compression forces and reduced dwell time
required to achieve the same level of tablet hardness. Overall,
this enables manufacturing at higher production speeds,
resulting in increased system efficiency and productivity.

MODELLING IS INSTRUMENTAL IN DRIVING CHANGE
As the pharmaceutical industry works towards Pharma 4.0,
process modelling is fransforming manufacturing processes.
The regulatory expectation is that the industry will apply
scientific and risk management approaches to developing

a product and the associated manufacturing processes.
Compared with empirical approaches, process models offer
the scientific insight needed to ensure a process is designed
specifically to deliver the intended outcomes. There is greater
process visibility, less trial and error, greater compliance,
and continuous improvement. Furthermore, modelling can
significantly reduce the R&D cost and time by characterizing
the design and response spaces.

FIGURE 6: Modelling validation by comparing process designs on quality and processing impact - process control.
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