Flexible Facility Designs Complimenting Continuous Manufacturing

Dennis Powers
G-CON Manufacturing Inc.

September 19, 2016
Agenda

- The Industry Situation & Future Indicators
- The Continuous Manufacturing Paradigm
- OSD Manufacturing Advances
- Biopharm Manufacturing Advances
- Rethinking Facility Design
- Summary
Industry Situation

- Patent cliff for small molecules is reality and affects large molecule industry with biosimilars.
- Regulatory view is changing and supporting agile, efficient, and flexible manufacturing platforms.
- Global expansion push to secure APIs and capture local markets.
- Process volumes become lower and manufacturing requires more flexibility for better facility capacity utilization.
- Single-use equipment can lack flexibility when used in a traditional facility lay-out.
Future Indicators

- Aging population on the rise with further needs for capacity to avoid stock-outs/drug shortages
- Rising middle class in different countries require in-country/for country manufacturing capabilities
- Changing viral and microbial diseases require fast response possibilities utilizing new technologies and deployment methods
- Regenerative/personalized medicines require specific processing systems in accordance with any possible logistic hurdle and robust containment needs
- Continuous processing further reduces process footprints
Past Facilities may not fit New Needs

- High CAPEX (>\$500M)
- Long time-to-run (3-4y)
- Product dedicated
- Inflexible/non-scalable
- Extensive qualification needs
- Difficult containment
- Difficult to clone

Change is Needed
Some New Concepts may be Lacking

“Until now, modular facilities have reproduced traditional architecture with regard to embedding utilities piping and HVAC ducts in the interspace between the physical module limits and the suspended ceiling making refurbishment, if required, extremely complicated.

The new approach is to segregate pre-assembled modules into laboratory and utility modules, which are designed such that they permit even simpler and faster construction, qualification, validation and maintenance, respectively....”

Alan Pralong (2013)
The Future requires...

✓ Speed
 • Abbreviated design phases
 • Time-to-build/Time-to-run
 • Adoption of new technologies

✓ Agility
 • Scaling up and down w/o interruption of existing processes
 • Rapidly deployed in multiple locations (in-country/for country)

✓ Efficiency
 • Higher yield per footprint
 • Faster turn-around/Set-up time
 • Multi-product and parallel operations
 • Infrastructures for multi-purpose use
The Continuous Manufacturing Paradigm

- Continuous processing was developed as early as the late 18th century (e.g., Pig iron blast furnace, Fourdrinier paper machine)

- By the early 20th century continuous manufacturing processes were common in the food, chemical, and automotive industries

- The pharma and biopharma industries have relied heavily on the traditional batch based manufacturing processes developed over 50 years ago

- In the past 5 years, significant progress has been made in the development of continuous processes in pharma
OSD Manufacturing Advances

- Collaborations are driving technology advances and adoption
 - Novartis-MIT
 - Janssen-Vertex-Rutgers (C-SOPS)
 - Pfizer-GSK (PCMM)

- Companies are combining resources to effect the fastest path to success
 - Compete on products, not manufacturing technologies
 - Specialized expertise for new technologies
 - Regulatory leverage
 - Establishing guidance and standards
OSD Manufacturing Advances

- Continuous OSD manufacturing equipment is commercially available from multiple suppliers
- Process Analytical Technology (PAT) is being implemented to provide feedback and feed forward control of processes resulting in improved product quality
- Time and costs required for process development and validation are being significantly reduced
- OSD products manufactured by continuous processes have been approved by FDA and are currently on market
OSD Manufacturing Advances

- FDA Approvals
 - Vertex – Orkambi, Cystic Fibrosis Drug (July 2015)
 - Janssen – Prezista, HIV-1 Drug (April 2016)
OSD Manufacturing Advances

Portable Continuous Miniature & Modular

- GEA Continuous OSD Process integrated into G-CON portable cleanroom POD
- Prototype built and installed in 2015 at Pfizer Groton, CT site within existing grey space warehouse
- System designed to be used for process development, clinical manufacturing, and/or commercial production
- System can be redeployed to different location in future if required
OSD Manufacturing Advances

<table>
<thead>
<tr>
<th>Traditional Facility</th>
<th>PCM&M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment</td>
<td></td>
</tr>
<tr>
<td>Facility constructed for best case forecast. Modules and equipment are fitted out as required</td>
<td>Purchase new PCM&M POD & equipment or redeploy existing system</td>
</tr>
<tr>
<td>High up front investment (~$40MM)</td>
<td>Lower up front investment (~$15MM)</td>
</tr>
<tr>
<td>Timeline</td>
<td></td>
</tr>
<tr>
<td>24 – 36 months for facility</td>
<td>12 -18 months for new POD and equipment</td>
</tr>
<tr>
<td>12-18 months for modules / equipment</td>
<td>3 - 6 months to relocate existing PCM&M</td>
</tr>
<tr>
<td>Agility</td>
<td></td>
</tr>
<tr>
<td>Facility and batch equipment oversized or undersized</td>
<td>Continuous system output is scalable</td>
</tr>
<tr>
<td>A change in business case can result in stranded assets in targeted market</td>
<td>PCM&M systems can be relocated if market conditions change</td>
</tr>
</tbody>
</table>

Responding to a new product launch or Emerging Market tender with uncertain forecast

ANNUAL MEETING & EXPO
18-21 SEPTEMBER 2016 ATLANTA, GA
OSD Manufacturing Advances

PCMM Prototype Design
OSD Manufacturing Advances

Continuous Mixing & Direct Compression

ConsiGma™ WG

CMT Mixer

Feeders

Granule Conditioning Unit

HSWG Wet Granulation

Dryer

CMT Mixer

Feeders

Total Height ~14.5 ft

Tablet Press

Feeders
Biopharm Manufacturing Advances

- Single-use systems now being utilized in commercial processes after being used in clinical manufacturing for over 20 years

- Process understanding, technology advances, and improved controls have resulted in process intensification of USP

- Perfusion upstream processes were developed over 25 years ago and are currently used in manufacturing of commercial products (< 10%)

- Continuous downstream processing has been limited by the technologies available
“About five years ago, as the industry matured, the manufacturers were focusing on flexibility, cost, and capital efficiency in manufacturing,” he says. “It was at that point that continuous technology was considered for downstream processing, so we are really at the early stage of a normal technology adoption cycle.”

Andrew Sinclair, President and Founder of Biopharm Services
Biopharm Manufacturing Advances

- Challenges ahead but industry investing
 - Immaturity of technologies for continuous downstream processing
 - Significant upfront investment in process understanding is required
 - Need for effective PAT including on-line instrumentation and real time monitoring of processes
 - How to perform quality assurance/quality control with products manufactured through a continuous system as well as defining lots and batches
 - New facility concepts and layouts needed to support end to end continuous processes
A continuous manufacturing facility footprint is smaller than traditional process facility for a given output
Rethinking Facility Design

- Pre-fabricated modular cleanrooms integrated into new or existing shell structure
- Build offsite and assemble onsite into facility
- Support of multi-product/tenant facilities
- Redeployed or repurposed in future as needed
- Platform facility designs allow for cloning and accelerated deployment
Rethinking Facility Design

The combination of continuous processes and single use technologies integrated within a pre-built modular cleanroom system can help meet the future need for smaller and more agile manufacturing facilities that can be cloned and rapidly deployed throughout the world.
Summary

- Traditional process and facility designs are straining to meet pressing industry requirements and application needs.

- Future facilities will need to be smaller, more agile, and deployed more rapidly than in the past.

- Significant advances have been made in OSD continuous processing through effective collaborations and technology advances which have resulted in the recent FDA approvals.

- While the biopharm industry has used continuous USP manufacturing for many years, the development and technologies for continuous DSP is still in the early stages.

- New innovative facility designs have been implemented for OSD continuous manufacturing operations and are being developed for a broad range of biopharm applications.
Thank you for your attention!

dpowers@gconbio.com

“The arrogance of success is to think that what you did yesterday will be sufficient for tomorrow”

William Pollard