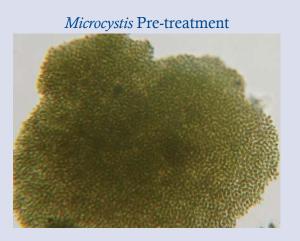


Microcystin concentrations following treatments of harmful algal blooms


West M. Bishop, Brenda M. Johnson, John H. Rodgers, Jr. Clemson University, Clemson SC

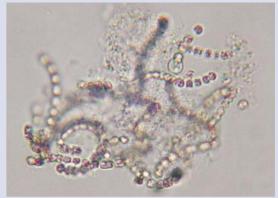
The Question:

Should the fear of "releasing" microcystin deter an algaecide application?

LEAKY CELL HYPOTHESIS

The hypothesis: Many cyanobacteria contain *microcystin* internally and upon treatment with algaecides cells are lysed and release *microcystin* into the water, consequently posing increased threats to organisms.

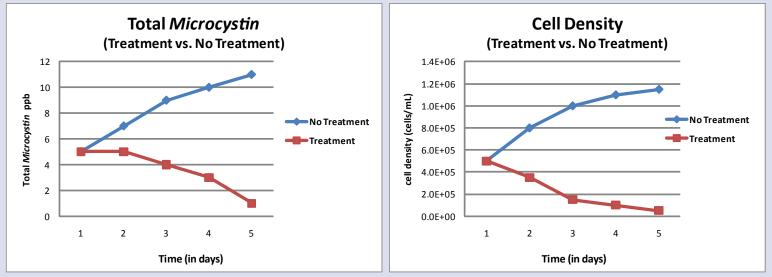
Microcystis Post-treatment


The rebuttal:

- If the source of the toxin is controlled (i.e. cyanobacteria) no more toxin can be produced.
- Treatments do not have to lyse the cell for cell death to occur.
- The "no action" decision often results in increased toxin and consequent risk.

Anabaena Pre-treatment

Anabaena Post-treatment

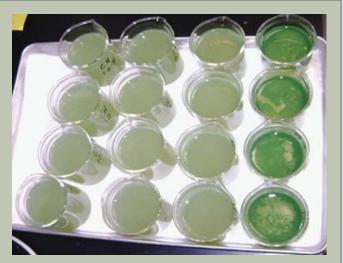

Microcystin producing cyanobacterial genera:	MICROCYSTIN		
Microcystis Nostoc	• Hepatotoxic Cyclic Peptide Toxin		
Anabaena Hapalosiphon Oscillatoria Anabaenopsis Planktothrix	 Potentially toxic to fish, invertebrates, and mammals at low concentrations (≤8 µg/L) 		
• World Health Organization drinking water	• Many Forms: LA, LL, AR, YA, RR, LR		
guideline of $1 \mu g/L$ total <i>microcystin</i> .	• Widespread		
• Total <i>microcystin</i> includes both intracellular	• Water Soluble $(A_{M})^{OH}$		
(inside algal cells) and extracellular (in the water).	• Chemically Stable		

Potential Sources of Leaky Cell Hypothesis (Were treatments legal for surface waters?)

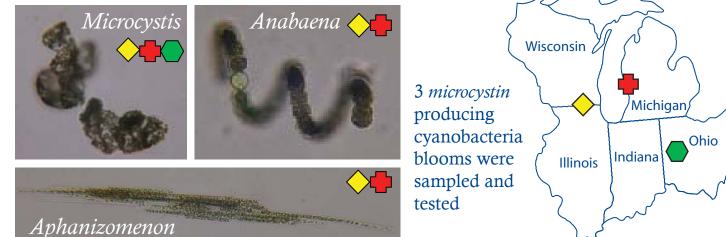
Reference	Algae Studied	Treatments	Microcystin Released?
Kenefick et al. 1993	<i>Microcystis</i> concentrated from Coal Lake (density unspecified)	CuSO ₄ : higher than field treat- ments (concentration unspecified)	Aqueous <i>microcystin</i> measured, not total
Jones and Orr 1994	Microcystis aeruginosa dense bloom in Australia (density unspecified; total microcystin: 1300-1800 µg/L	Coptrol: spot sprayed (concentration unspecified algae in reservoir controlling 2 - 3 days)	<i>Microcystin</i> released and subsequently degraded
Peterson et al. 1995	Aphanizomenon flos-aquae laboratory culture medium (2.5 x 10 ⁵ cells/mL)	FeCl ₃ /AlSO4 (25 mg/L), CuSO4 (0.125 - 0.5 mg Cu/L), KMnO4 (0 - 2 mg/L), H2O2 (≤10 mg/L), CaOH (0 - 100 mg/L)	Membrane damage, dissolved organic carbon and geosmin released
Daly et al. 2007	<i>Microcystis aeruginosa</i> labora- tory culture (3 x 10 ⁵ to 1.1 x 10 ⁶ cell/mL)	Chlorine (8 - 20 mg/L)	Chlorine (\geq 12 mg/L) cells lysed released toxin; chlorine can degrade <i>microcystin</i>
Touchette et al. 2008	Anabaena and Microcystis laboratory microcosms (density unspecified)	CuSO4 and PAK-27 (SCP) at \leq 5 times label rate)	At high treatments released 1.8 and 1.3 μ g/L, respectively

Is "doing nothing" (not treating) avoiding or decreasing risk?

- The leaky cell hypothesis may be mute (risk is due to total *microcystin*, not just released fraction).
- If no treatment is implemented, total *microcystin* is likely to increase.
- If treatment is implemented, both cell density and total *microcystin* are likely to decline.
- Subsequent release of *microcystin* would be curtailed due to the lack of cells for production.
- Below is an illustration of this concept from measurements taken on a Wisconsin lake.

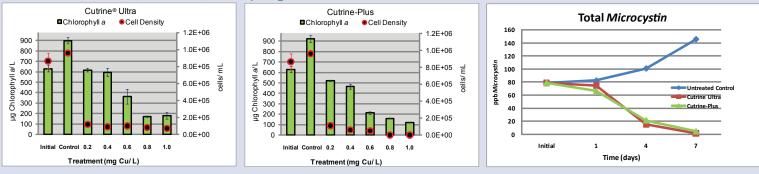

Responses of Harmful Algal Blooms to Algaecide Exposures:

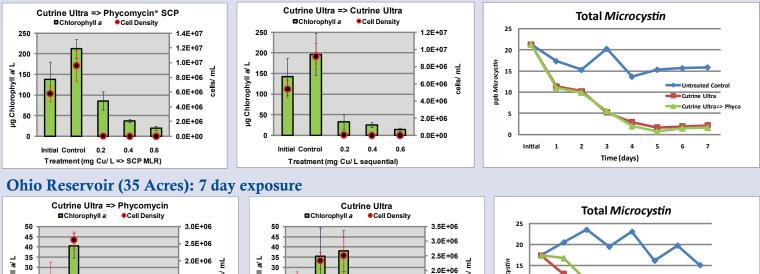
Objectives:

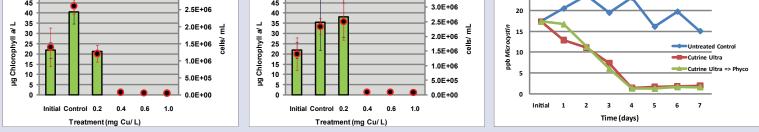

- 1. Acquire field samples of toxin producing cyanobacteria blooms.
- 2. Measure responses to algaecide exposures (Chlorophyll a, Cell Densities, Total Microcystin).
- 3. Based on responses, recommend an effective algaecide treatment.

The Algal Challenge Test (ACT)

- Samples of site waters and algae were collected
- Laboratory toxicity tests with US EPA registered algaecides
- Measured responses of target algae to treatments (Chlorophyll *a*, Cell Densities, Total *Microcystin*)
- Identified an effective treatment that complies with water resource usages and restrictions at the site


Samples:


Sites	pН	DO mg/L	Conductivity µS/cm	Temperature °C	Alkalinity mg/L as CaCO3	Hardness mg/L as CaCO ₃
Illinois Reservior (210 Acres)	8.62	9.50	317	23.1	126	144
Michigan Lake de (700 Acres)	8.46	8.61	588	22.2	104	155
Ohio Reservior (35 Acres)	9.09	9.10	323	21.4	154	180


Results of Laboratory Algaecide Treatments:

Illinois Reservoir (210 Acres): 7 day exposure

Michigan Lake (700 Acres): 7 day exposure

Conclusions:

- Cutrine Ultra controlled Microcystis in samples from all sites without increasing total microcystin.
- Even if toxin was released, total microcystin did not increase with an effective treatment.
- Risks are not avoided by taking "no action"; however, an algaecide should be applied before algal densities and *microcystin* production poses risks.
- Leaky Cell Hypothesis is based on unrealistic treatments, flawed consideration of risks, and not supported by results from typical, surface water treatments.

References

- Kenefick, S.L., S.E. Hrudey, H.G. Peterson, and E.E. Prepas. 1993. Toxin release from *Microcystis aeruginosa* after chemical treatment. Wat. Sci. Tech. 27(3-4): 433-440.
- Jones, G.J., Orr, P.T. 1994. Release and degradation of *microcystin* following algicide treatment of a *Microcystis aeruginosa* bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Research 28(4), 871-876.
- Peterson, H.G.; Hrudey, S.E.; Cantin, I.A.; Perley, T.R.; Kenefick, S.L. 1995. Physiological toxicity, cell membrane damage and the release of dissolved organic carbon and geosmin by *Aphanizomenon flos-aquae* after exposure to water treatment chemicals. Water Research 29(6), 1515-1523.

Touchette, B.W., C.T. Edwards and J. Alexander. 2008. A comparison of cyanotoxin release following bloom treatments with copper sulfate or sodium carbonate peroxyhydrate. In: H.K. Hudnell (ed.) Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Springer: New York. Pp.314-315.

Daly, R.I., L. Ho, and J.D. Brookes. 2007. Effect of Chlorination on *M. aeruginosa* Cell Integrity and Subsequent Release and Degradation. Env. Sci. Tech. 41: 4447-4453.